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Here we present an easy experimental method that allows the characterization of the negative refractive index of a isotropic 
metamaterial in the visible spectral region. The method is based on the measurement of the deviation of a light beam 
passing through the metamaterial as a function of the incident angle. The theoretical expression was derived in the case of 
negative refraction. It was shown that such a method can be used also in the realistic case of a thin metamaterial deposited 
on a thick substrate.  
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1. Introduction 
 

In 1968 V. G. Veselago described, from the 

theoretical point of view, the behavior of negative index 

materials and envisaged the possibility to their realization 

[1]. In more recent years J. B. Pendry demonstrate that 

negative index materials can be used in order to realize 

perfect lenses with super-resolution [2] and other exotic 

functionalities such as cloaking or invisibility [3,4]. From 

the theoretical point of view, light refracted by isotropic 

negative index materials bents by following negative 

angles with respect to the path followed in the case of 

positive materials (Fig. 1a,b) as described by Snell’s law  

 

1 2( ) ( )n Sin n Sin            (1) 

 

when one of the two refractive indices, either n1 or n2, is 

negative.  

 

 
Fig. 1. Illustration of the refracted light in presence of 

(a) positive index material and (b) negative index 

material; deviation of a light beam introduced by a 

positive  index  material  (c)  and negative index material  

                                            (d). 

In order to present a negative index it is necessary that 

both the relative permittivity r  and the permeability r  

of a material are negative [1]. In nature there aren’t 

materials that present at the same time 0r   and 

0r  , so different artificial materials were proposed, 

the so called metamaterials, in which geometric features 

(smaller than the wavelength of interest) determine an 

effective negative index behavior. First examples of real 

metamaterials were obtained in the microwave regime 

where the dimensions of the features are in the millimeter 

scale [5,6], but effort were devoted in order to scale down 

in the infrared and visible regime [7]. In 2004 J. B. Pendry 

demonstrated that it is possible to obtain negative index 

materials by using chiral materials without the stringent 

condition to have both negative
 r  and r  [8]. In that 

materials chirality gives rise to the phenomenon of optical 

activity [9] where the speed of light is different for left 

handed circular polarized light with respect to the right 

handed one.  

On these bases a lot of different metamaterials were 

realized showing 3D chirality [10], 2D chirality [11,12] or 

even extrinsic chirality [13-15] in the visible optical range.  

From the point of view of the metamaterials 

characterization, different techniques have been used in 

order to study the effective behavior of a metamaterial in 

the optical frequency. For example second harmonic 

generation in different configurations [16-18] is 

considered as a very sensitive method in order to retrieve 

sub-wavelength morphological symmetries, like the 

presence of an effective optical activity [18-20]. However 

in order to verify the presence of an effective negative 

index behavior other complex techniques must be used, 

like phase delay measurements or coupled transmission 

and reflection measurements, so that information on phase 

velocity of the light are obtained [13,21]. 
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Here we want to present a fast and easy way to 

characterize the negative index behavior of a planar slab of 

a isotropic metamaterial, by measuring the deviation of a 

light beam passing through the metamaterial as a function 

of the incidence angle (see Fig.1c,d). This technique relies 

on the statement that the light passing in a negative index 

material must by refracted by following the Snell’s law 

(eq.1) in a reversed way with respect to positive index 

materials.   

 

 

2. Method 
 

By looking at Fig. 2 it is possible to calculate the 

deviation d of the light beam introduced by a planar 

material of thickness t and refractive index n2 as a function 

of the incidence angle .  

 

 

 

Fig. 2. Schematic of the geometrical parameters used in 

the calculation of the deviation of light (a) in the case of 

positive index materials and (b) in the case of negative 

index materials. 

 

The deviation d is calculated with respect to the un-

refracted light that can be observed when light impinges at 

normal incidence ( 0  ). From Fig. 2, in both the cases 

of positive or negative refractive index n2, d results to be  

 

sin( )d l       ,    (2) 

 

where  is the internal refracted angle given by eq.1 and l 

is the geometrical length of the beam path inside the 

material. The relation between l and t is given, in both 

cases of positive or negative refractive index, by: 

 

cos( ) cos( )t l l          .      (3) 

 

By substituting the value of l found in eq. 3 inside eq.2 it 

is possible to obtain the relation of the deviation 

introduced by the planar material: 

 

sin( )

cos( )
d t

 




 


 .       (4) 

 

By remembering the trigonometric relation 

 

sin( ) sin( )cos( ) sin( )cos( )           (5) 

 

the eq.4 can be rewritten as: 
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 (6) 

 

where it was also used the eq.1.  

Since the internal angle ' can lies only in the [-/2; 

/2] range it results that: 

 

2cos( ) 1 sin ( )    ,  (7) 

 

then, by using again eq.1, it is possible to rewrite eq.6 by 

explicating the dependence of d (normalized to the 

thickness t) with respect to the ratio of the refractive 

indexes 2 1n n n and the external incidence angle  : 
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  , (8) 

 

where the minus sign holds for positive value of the ratio 

2 1n n n and the plus sign holds for negative values. As 

it is known from the internal total reflection phenomenon, 

eq.8 is valid only when: 
2 2

2 1( ) sin ( )n n   , therefore it is always valid in the 

case of 2 1 1n n   , meanwhile in the case when 

2 1 1n n  , it is valid only when the incidence angle is 

below the critical angle 2 1arcsin( )c n n 
.
 

In Fig. 3 the eq. 8 is shown for different values of the 

ratio 2 1n n n ranging in both positive and negative 

region (in Fig. 3a is shown the eq.8 in the case of 1n  , 

in Fig. 3b is shown the eq.8 in the case 1n  ). The graph 

is shown only for positive incidence angle  , because eq. 

8 is anti-symmetric, thus    d t d t    .  By 

comparing the measured deviation obtained from a sample 

of a metamaterial with the curves in Fig. 3 or by fitting the 
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data with eq. 8, it is possible to retrieve the effective index when the thickness of the sample is known.   

 

 

 

Fig. 3. Graph of the deviation normalized to the sample thickness as a function of the incidence angle (a) for 

 1n   and (b) for 1n  . 

 

What it is worth of interest is the fact that, in the case 

of negative index ( 1n   ) the curves of Fig. 3a present a 

relative maximum in the deviation that is achieved for 

incidence angles lesser than 90°. This allows to know 

immediately if we are in the presence of a negative index 

metamaterial even if its thickness is unknown. 

Usually metamaterials in optical regime are fabricated 

on dielectric substrate (see Fig. 4a). The Snell’s law in 

eq.1 applied to two (or more) layers states that: 

 

0 1 2sin( ) sin( ') sin( '')n n n     ,    (9) 

 

So that the refracted angle inside the metamaterial depends 

only on the external incident angle and not on the index of 

refraction of the substrate.  

 

 

Fig. 4. (a) deviation introduced by two layers; (b) schematic 

 of a potential experimental set-up. 

 

 

 In this case the total deviation dT results to be the sum 

of the deviation obtained on the bare substrate d1 and the 

deviation obtained on the metamaterial d2. This fact can be 

very useful in practical cases where it is possible to 

measure directly only the total deviation and the deviation 

given by the bare substrate. The deviation pertinent to the 

metamaterial will result simply by: 

 

2 1Td d d    . (10) 

 

Then the refractive index of the metamaterial can be 

obtained by fitting the data obtained from eq.10. 

 

 

3. Experimental set-up 
 

The above considerations allow us to propose a 

possible scheme of a experimental set-up, similar to the 

one described in ref. 22, that allows to measure the 

deviation of the light (see Fig. 4b). A collimated light 

beam is modulated by a chopper, than the light impinges 

on the sample that is posed on a motorized rotation stage. 

The light at the output of the sample is detected by a 

photodiode dived in sectors (labeled A for the left side 

sector and B for the right side sector in Fig. 4b). The 

output of the sensor was analysed by a position detector 

circuit giving the normalised difference between the power 

of the light in the sector A and the power of the light in 

sector B: 

 

A B

A B

P P
X

P P



+
  .  (11) 

 
The normalization is necessary in order to remove the 

effect of different light intensities, due, for example, to the 

different transmitted signal for s and p polarization state. 

The X value is proportional to the displacement of the 

beam with respect to the centre of the detector and was 

supplied in volts at the output of the circuit. Measurements 
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conversion from the circuit signal (in volts) to the real 

displacement (in mm) is retrieved by a calibration 

measurement performed, for example, onto a glass slide of 

known thickness. In Fig. 5 we show the experimental 

measurements of the deviation introduced by a 1 mm thick 

microscope glass slide, when the incoming light 

(=400nm) is polarized in s state (black triangles) and p 

state (red squares). 

 

 

Fig. 5. Experimental deviation of a 1mm glass slide for s 

polarized light (black triangles) and p polarized light 

(red triangles). The blue curve is the fitting curve 

obtained by using eq. 8 with  the index of refraction  n  as  

                               the free parameter. 

 

 

Both curves can be fitted by eq.8 (blue line in Fig. 5) 

resulting the refractive index of glass n=1.52 with a 

standard deviation of n=0.00546. With this kind of set-up 

we have already demonstrated that it is possible to obtain 

sensitivity better than 100 nm [22]. 

 

 

4. Conclusions 
 

The method here presented is an easy and sensitive 

way useful in the evaluation of the negative refractive 

index of a isotropic metamaterial. The general relation that 

links deviation and index of refraction that we retrieved, 

can be used both for positive and negative index materials. 

In particular the method can be used in the case of large 

interest when the metamaterial is fabricated on a thicker 

substrate.    
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